

Collaborators

- · National Cancer Institute—
 - Jay Lubin, Ken Cantor, Dalsu Baris, Debra Silverman
- Colorado State University/NCI,
 - Jay Nuckols
- Dartmouth Medical School,
 - Margaret Karagas
- The New England States
- USGS NAWQA program

Outline of talk

- · Arsenic in New England
- New England Bladder Cancer Study
- · New England arsenic model
- Summary

Arsenic in *public* bedrock wells in New England

Number of people with private wells with arsenic > 10 ppb

New England Bladder Cancer Study

Males- 1970-94

Females- 1970-94

^{*}Atlas of Cancer Mortality in the United States, 1950-1994, NCI

New England Bladder Cancer Study

- · Study location: three states of Northern New England with persistent elevated bladder cancer mortality (Vermont, New Hampshire, and Maine)
- · Design: Population-based case-control study
- · 3+ years of case ascertainment: 2002-2005
- · 1200 cases, 1200 controls
- · Interview at the subject's home, with collection of water & biologic samples

Bladder Cancer in Northern New England: Questionnaire Items

- · Demographic information
- Smoking history
- · Occupational history
- · Food frequency questionnaire
- Medical history
- · Other factors
- · Residential & water use histories

Estimate arsenic concentrations

 Objective: estimate arsenic concentrations in the water supplies for each subject for each year (lifetime, with priority on previous 40 yrs)

· Current home:

- · use measured arsenic level
- · Past homes:
 - · use measurement data, if available
 - · use arsenic prediction model

New England arsenic model

- · Compile dependent variable (arsenic) data from existing data sources
- · Collect new data where arsenic variance is greatest
- Compile explanatory data sets (GIS mapped variables)
- Build process-based logistic regression model

Dependent variable data for Logistic Model

1.	Public water supply data	2,326
2.	USGS NAWQA	117
3.	USGS NWIS	781
4.	USGS southeast NH	355
5.	Other NH private wells	191
6.	Maine private wells	<u>132</u>
		3,902

NB: About 60 percent of wells from public water supply monitoring programs

Dependent variable: arsenic in water wells

 $N=2,470 (78\% < 5 \mu g/L)$

Percent less than concentration shown

Independent variables – conceptual

Independent variables – GIS

Variables summary for Logistic Model

VARIABLE	TYPE	EXP(B)	P-VALUE			
ARSENIC SOURCES—GEOLOGIC PROVINCE						
Avalon Belt	binary	0.210	<0.0001			
Bronson Hill	binary	0.047	0.0026			
Mesozoic Basin	binary	2.627	0.0443			
Waits River Basin	binary	0.054	0.0042			
ARSENIC SOURCES—GEOLOGIC UNIT						
Dc1m - Concord granite	binary	1.878	0.0134			
DSm - Madrid Fm	binary	4.515	0.0244			
DSrb - Rindgmere Fm	binary	3.821	0.0343			
SObc - Berwick Fm, calcareous	binary	3.770	<0.0001			
SOec - Eliot Fm, calcareous	binary	13.286	0.0281			
SOk - Kittery Fm	binary	6.176	0.0695			
Srl - Rangeley Fm	binary	2.320	0.0010			
Sspm - Perry Mtn. Fm	binary	3.499	0.0139			
Sw - Waterville Fm	binary	2.838	0.0080			
SZk - Kittery Fm., Maine	binary	6.176	0.0241			
Zmz - Massabesic Gneiss Fm	binary	0.116	0.0033			

Variables summary for Logistic Model

VARIABLE	TYPE	EXP(B)	P-VALUE			
ARSENIC SOURCES						
Stream sediment as, (In) mg kg ⁻¹	continuous	1.7	<0.0001			
GEOCHEMISTRY						
Marine inundation - Pleistocene	binary	2.1	<0.0001			
Intrusive granitic pluton category	binary	1.4	0.0069			
HYDROLOGY AND LAND USE						
Developed land (500 m radius)	binary	0.6	0.0007			
Elevation (1:24,000 scale DEM, m)	continuous	0.9	0.0005			
Population density (persons km ⁻²)	continuous	0.9	0.0354			
Precipitation, mm yr-1	continuous	0.9	<0.0001			
Water bodies (500 m radius)	continuous	0.9	0.0023			

68° W

Probability of arsenic ≥ 5 ppb

Application of Logistic Model

- 1. Basis for exposure assessment (currently being converted to a concentration based model)

 True exposure for subject (i) for all years (y):= Σ_y $As_{y(i)}$ Consumption_{y(i)}

 (Consumption from subject's Qx data)
- 4. Use to identify priority areas for sampling of past wells (Low priority where As < 5.0 ug/L)

Limitations of Logistic Model

- Predicts probabilities rather than concentrations
- · Arsenic is highly variable spatially
- · Cannot account for independent variables that are not mappable
- · Does not address temporal variability

Summary

- · Significant predictive factors include geologic, geochemical, hydrologic, and land use factors
- · Can be used to guide sampling design and exposure modeling
- 2006, Modeling the Probability of Arsenic in Groundwater in New England as a Tool for Exposure Assessment: Environmental Science and Technology, v. 40, no. 11, p. 3578-3585.

Contact Information

Joseph Ayotte, USGS NH-VT Water Science Center 361 Commerce Way

Pembroke, New Hampshire 03275

PHONE: 603.226.7810

EMAIL: jayotte@usgs.gov